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At any free surface a t  which the tangential stress T,, vanishes there must be a surface 
vorticity o = - 2 ~ q ,  where K is the curvature and q the tangential velocity. In a 
surface wave on water, this condition produces a (Stokes) boundary layer with 
thickness of order 6 = (2v/a)i, where v is the kinemetic viscosity and a the radian 
frequency of the wave. To first order in the wave steepness parameter ak, the 
vorticity remains within the boundary layer, but at  second order some escapes 
through the Stokes layer. The mean vorticity 6 at  the outer edge of the Stokes layer 
is of order 2(ak)*a, twice the mean vorticity generated a t  the free surface. 

These results are applied to steep capillary waves, particularly the parasitic 
capillaries often seen on the forward face of short gravity waves. Because of the high 
value of a for the capillaries, the vorticity they generate is much larger than that 
generated by the gravity wave itself. Hence the capillaries contribute significantly to 
the vortex (roller) often found at the crest of short gravity waves, when capillaries 
are present. It is argued that the crest roller and the capillaries form a cooperative 
system, a ‘capillary roller’ in which each supports the other, with the aid of surface 
tension and viscosity. Energy is supplied by the gravity wave. 

A capillary roller is one instance of a more general phenomenon : a ‘ capillary bore ’, 
which is a noticeable feature of many disturbed water surfaces. 

1. Introduction 
A very intriguing phenomenon, which throws much light on the small-scale 

structure of the sea surface, is the occurrence of ‘parasitic capillaries ’ on the forward 
face of moderately short gravity waves, especially those with wavelengths 5-50 cm ; 
see figure l (a) .  These capillary waves were first studied experimentally by Cox 
(1958). Evidently their existence depends on the fact that a gravity wave and a much 
shorter capillary wave may have the same phase speed. The dynamical theory of the 
generation of parasitic capillaries has been developed by Longuet-Higgins (1963), 
Crapper (1970), Ruvinsky & Freidman (1981, 1985), and Ruvinsky, Feldstein 
& Freidman (1991). This so far takes into account only the first-order effects of 
viscous damping. 

However, an important feature of short, steep gravity waves, especially those with 
parasitic capillaries, has been pointed out by Okuda, Kawai & Toba (1977) and also 
by Ebuchi, Kawamura & Toba (1987); see figure 1 ( b ) ,  This is the occurrence of a very 
strong vortical region, or roller, at the crest of the gravity wave, even in the absence 
of wind (cf. Cox 1958). Similar effects can indeed be detected in small-scale capillary 
bores and from water jets entering a still-water surface (Koga 1982). The question 
arises : what is the source of this strong vorticity ? The vorticity does not seem to be 
present in the trough of the gravity wave - only in the crest. 

In the present paper we shall show that a very likely source of the crest vorticity 



660 M .  S. Longuet-Higgins 
Wind -> 

Streamwise streaks Edge 

region 

FIGURE 1. A close-up photograph of wind waves of length 9 cm taken with wind speed 6 m/s at 
fetch 6 m. Below is a schematic picture showing the high vorticity region at the gravity wave crests. 
(From Ebuchi et al. 1987.) 

is the parasitic capillaries themselves, especially the steepest capillaries close to the 
forward edge of the roller. This is a nonlinear effect which can be understood in two 
steps. First, as proved in $2,  we note that any curved free surface in a steady flow, 
irrotational or not, is necessarily a source of vorticity. The strength of the vorticity 
is 2 ~ q ,  where K is the curvature of the streamline at  the surface and q is the stream 
velocity. 

It follows that any oscillatory flow must develop a vortical boundary layer, or 
‘Stokes layer’ (see 954 and 5). To first order ($4), the vorticity diminishes 
exponentially inwards. But it is a remarkable fact that at second order, there is a 
mean ‘rectified’ vorticity just beyond the boundary layer. This must diffuse into the 
interior, in a similar way to the vorticity in the flow past a flat plate. For waves of 
small slope, the strength of this vorticity is double that generated at the surface 
itself, and is given by 

(1.1) 
independently of the viscosity ! Here, ak denotes the capillary wave steepness and u 
the radian frequency. The simple result (1 .1)  has indeed been verified experimentally 
for gravity waves (Longuet-Higgins 1960). For capillary waves, however, the 
frequency u is much higher than for gravity waves of the same phase speed. Hence 
the vorticity generated is much greater also. This vorticity from the capillaries 
accumulates mainly in the gravity wave crests. 

The total vorticity diffused into the ‘stream’ which flows backwards under the 
ripples (in a frame of reference moving with the wave speed) is calculated in $6 below. 
It is found fully capable of producing a vortex beneath the crest of the gravity wave, 
with a velocity difference of order c (the phase-speed) between top and bottom of the 
vortex. 

4, = - 2 ( ~ k ) ~  CT, 
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This conclusion is confirmed in $8  by an integral argument involving the mass 
transport in the capillary waves. Steep capillary waves have very rounded crests, in 
which the particle velocity almost equals the phase speed c. They are therefore 
propagated somewhat like ' balloons ' of water floating on the undisturbed surface. 
When these waves are damped out by viscosity, their forwards momentum (mass 
transport) must be converted into a shearing current, in which the velocity difference 
between top and bottom is of order c. 

For steep capillary waves having very sharply curved troughs, the surface 
vorticity may be shed into the interior differently, namely by flow separation below 
the wave troughs; see $9. Evidence of this effect, which can be accompanied by the 
trapping of air bubbles, is to be seen in the observations of Koga (1982). 

The development of a capillary roller, from an initially irrotational wave, is 
discussed in f 10. Conclusions and further suggestions follow in $ 11. 

2. The vorticity generated at a free surface 
In this section we prove some general results concerning the generation of 

vorticity . 
Let ( s ,  n) denote coordinates tangential and normal to any streamline in a steady, 

two-dimensional flow, as in figure 2. Here q denotes the particle speed and K the 
curvature of the streamline - positive if the surface is concave. The tangential stress 
is denoted by rn8. Then we have: 

THEOREM A. I n  any steady flow in which the tangential stress vanishes, the vorticity 
at the surface must be given by 

0, = - 2Kq. (2.1) 

Proof. In general, if (u, v) are components of fluid velocity in the directions of any 
fixed rectangular coordinates (x, y )  then 

and r,, = v ( $ + g ) .  

So if r,, = 0, we have au/ay = -av/ax, hence 

av 
ax 

0 = 2-. 

Take the axes (2, y )  tangential and normal to the streamline at  a particular point 0, 
and let 0 be the angle between the tangents to the streamline a t  0 and the general 
point P, as in figure 2.  Then we have 

v = - q  sin 0 (2.5) 

and 
a a a 
- = cos 0-+sin 0-.  ax as an 

Performing the differentiation and setting 0 = 0 afterwards we get 

since by definition K = a€J/as. Substituting in equation (2.4) we obtain (2.1). 
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4” 
FIGURE 2. Definition of coordinates ( 8 ,  n).  

FIGURE 3. The flow corresponding to solid-body rotation. 

Theorem A was derived less directly but in a more general form by Longuet- 
Higgins (1953 ; see equation (199)). 

Physical interpretation. To ensure that r,, = 0 the fluid must move locally so that 
there is no relative distortion of the fluid elements. That means that the local flow 
is a solid rotation, see figure 3.  The particle speed q in this flow is given by 

where 52 is the rate of rotation and r is the distance from the centre of rotation. Since 
r must be equal 1 / ~ ,  where K is the curvature, we have 

But i t  is well-known that the local rate of rotation 52 of a fluid element is just &I, 
where w is the vorticity. Hence (2.9) is equivalent to (2.1). 

q = -Qr ,  (2.8) 

Q = -  (2.9) 

Note that for any linearized surface wave, given by 

y = a cos b (2.10) 

where y is the surface elevation and c the phase-speed, we have 

K = yx+ = -ak2 cos ks 
w = - 2 ~ q  = aka cos ks, 

and q = - c .  Hence 
(2.11) 

(2.12) 
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w, > 0 
FIUURE 4. Schematic drawing of the vorticity in a progressive surface wave. 

where = ck,  the radian frequency. Thus w is positive at the wave crests and 
negative in the wave troughs, as shown in figure 4. 

A consequence of Theorem A is that in the absence of surface stresses, waves in real 
fluids cannot be entirely irrotational. Nevertheless, we can still use the well-known 
theory of irrotational waves as a first approximation, provided that we add 
boundary layers at the free surface (and if necessary at  solid boundaries) to 
accommodate the non-zero values of the vorticity at the boundary (cf. Longuet- 
Higgins 1953, 1960). We shall now apply this procedure in the first place to pure 
capillary waves, that is waves so short that the influence of gravity on the phase 
speed can be considered as negligible. 

3. Pure capillary waves 

(1970) pure capillary wave solution, given in the form 
To illustrate the nonlinear behaviour of ws, we apply the results of $2 to Crapper’s 

z = t a n  w-w, (3.1) 
where z = x+iy, w = $+i$ and we have chosen dimensionless units so that the 
phase speed c and wavenumber k are 1 and 2 respectively (see figure 5) .  Then it is 
easilv found that 

where a star denotes the complex conjugate, and 

cos 24 sinh 2$ 
2i ( zw z z  ) sin2 w sin2 w* 

/.= 1 ZUJw Z L J  = (3.3) 

(see Longuet-Higgins 1988). The free surface may be chosen as any streamline 
$ = $o. The wave amplitude a (half the crest-to-trough height) is given by 

ak = 2/sinh 2$0. (3.4) 

!jq2+T~ = + (3.5) 

provided coth 2$0 = 2T, (3.6) 

As can be verified, the free surface condition is satisfied, since 

T being the surface tension in these units. Equation (3.6) serves as the dispersion 
relation. 

A salient feature of the profiles in figure 5 is that as the wave amplitude increases, 
so the waves become more rounded in the crests and sharply curved in the troughs. 
In the limiting case $o = 0.3941 the ratio of the curvatures is about 50: 1. Because 
of the relation (3.5), this implies that q is much greater in the troughs than in the 
crests. 
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FIQURE 5. Streamlines and free surfaces in Crapper's solution for an irrotational, pure capillary 
wave, viewed in a frame of reference moving to the right with the phase speed c. Units are 
dimensionless, with c = 1 ,  k = 2. (From Longuet-Higgins (1989.) 

s / 2 A  

- 4  
-1.0 -0.5 0 0.5 1 .o 

5/2a 

In figure 6 we show the vorticity w, at the free surface as given by (2.12), plotted 
against the distance s along the free surface, s = 0 being taken in the wave trough. 
s may be calculated from 

s = [id$. (3.7) 
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*o 

1.6 
1.2 
0.8 
0.6 
0.5 
0.4 
0.3941 

2alh 

0.0520 
0.1165 
0.2680 
0.4218 
0.5417 
0.7168 
0.7298 

ak 

0.1633 
0.3659 
0.8419 
1.3250 
1.7018 
2.2520 
2.2926 

e/( Tk)i 

0.9983 
0.9918 
0.9600 
0.8130 
0.8722 
0.8149 
0.8108 

TABLE 1. Parameters for pure capillary waves 

Figures 6(a) to 6(d) show the cases $o = 1.6, 1.2, 0.8 and 0.4,  corresponding to 
ak = 0.163 to 2.252 (see table 1) .  Even in case (a), that is for a fairly low wave steepness, 
it can be seen that w, is already quite nonlinear, being almost twice as great in the 
troughs as in the crests. As $o decreases to 0.4,  the vorticity becomes almost entirely 
concentrated in the troughs, and elsewhere is relatively very small. 

4. Boundary-layer theory : first approximation 
We now develop a boundary-layer theory for viscous capillary-gravity waves 

which will be applicable, in the first place, only to waves of small or moderate 
steepness ak. The general trend of the results as the steepness increases will, however, 
be indicative of the results to be expected when ak is of order unity. 

In any oscillatory flow, vorticity tends to diffuse inwards from the boundary on a 
lengthscale of order 

where v is the kinematic viscosity and u the radian frequency. Our approximation 
will be based on the assumption that 

s = p v / u ) t ,  (4.1) 

y = k s 4 1 ,  (4.2)  

where k is the wavenumber for the surface wave% 
Some numerical values of y are shbwn in table 2,  in which we took g = 981 cm/s2, 

T = 75 dyne/cm and v = 0.013 cm2/s. For very small wavelengths ( k  9 1) y varies 
only as ki. 

The profile of the free surface will be affected to order y2 ,  not y. For, the ratio of 
the viscous stress T,, to the normal stress T,, is of order 

(4 .3)  

for capillary waves. But q is of the same order as the phase-speed c ,  that is (Tk);. 
Hence 

2vc 2vk2 
?!EN- --= k2 s2 = y2. 
?,, C 2 / k  - 0- 

(4 .4)  

To first order in y we may therefore use the inviscid streamlines as if they were the 
actual streamlines. 

Let us write (4 .5)  

where (qsI ,qnI)  are the tangential and normal components of velocity in the 

(qs, qn) = (qsI, qnI) + (qsB9 qnB), 
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h 
(cm) 

100 
10 
1.74 
1 .o 
0.1 

TABLE 2. 

k 0- s 
(cm)-' (s-l) (mm) Y 
0.0628 7.85 0.575 0.0036 
0.628 25.2 0.321 0.0202 
3.617 84.2 0.176 0.0635 
6.283 157.4 0.0129 0.0808 

62.83 4320.0 0.0024 0.1541 

Values of the boundary-layer parameter y 

irrotational wave (seen in a frame of reference moving horizontally with the wave 
speed c )  and ( q s B , q n B )  are velocity components of vortical flow induced by the 
diffusion of vorticity from the boundary. 

qsI/C = O('), q s B / c  = O(y)* (4.6) 
The equation of continuity can be written 

a - + - ( q q n )  = 0. 
as an 

where 7 = (1 + nK). So to lowest order in y 

whence 

and 

aqsr  
as 

qnI = -n- = O ( y ) c  

qnB = -n- aqsB = O(y2) c .  
as 

Also the vorticity w is given to lowest order by 

w = -  aqsB 

an 

so that qsB = - wdn. s 

(4.7 1 

(4.8 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Since in two-dimensional flow there is no stretching of the vortex lines, the basic 
equation for the vorticity is 

Dw 
Dt 

~ = v v z w ,  (4.13) 

where D/Dt denotes differentiation following the motion and V2 is the two- 
dimensional Laplacian. I n  steady flow we thus have 

v v 2 w =  qs--+qn- w. ( :n) 

Within the boundary layer this reduces to  

(4.14) 

(4.15) 
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Now let q denote the mean speed of a particle along the boundary, defined as 

(4.16) 

Then we may write q61 = H+ d I ,  (4.17) 

where = 0, in an obvious notation. For low wave8, qequals the phase speed c and 
qLI represents the tangential component of the orbital velocity. Then on substituting 
in (4.15) our basic vorticity equation becomes 

(4.18) 

The boundary condition at  n = 0 is that 

w = - 2 2 ~ ~ ~ ~  = -2~(q+q:~)  when n = 0. (4.19) 

Also Vw+O as n+m. (4.20) 

To solve these equations we now make a perturbation expansion in powers of an 
ordering parameter E .  Thus we set 

!?;I = E Q 8 1 1 + ~ 2 Q s I Z + ' . . ,  (4.21) 

K = € K 1 ;  (4.22) 

we absorb all higher powers of E into K ~ .  It will be noted that qRI1 = q612 = 0. Also, 
since K = at?/as, where 8 is periodic, 

IT1 = 0. (4.23) 

We then seek a solution for w in the form 

by successive approximation. 

have 

w = €w1+€2W2+ ... (4.24) 

On substituting in equations (4.18)-(4.20) and equating the coefficients of B we 

(v$-q$)wl = 0, (4.25) 

w1 = - 2~~ q when n = 0, (4.26) 

when n+m. 

Suppose now that K~ is given as a Fourier series in 8 :  

W 

K~ = 2 C1eizKs, K = 21t/8,,,; 

equations (4.22) have the unique solution 

1-1 

m 
w1 = - 2q 2 C, eilK8-lfan 

1-1 

where 

so 

a2 = icr/v, R(a)  > 0 

l + i  
6 .  

a=- 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

FLM 240 22 
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FIGURE 7. The first-order flow (qaB1,qnB1) in the boundary layer for the capillary waves in 
figure 6: (a) +o = 1.6, ( b )  $o = 0.4. 

Each term on the right of (4.26) represents a term decaying inwards exponentially, 
but with a complex exponent a. The corresponding velocity components are 
calculated from 

qsBl = w1 dn (4.32) 

and from equation (4.15) respectively. A typical example is shown in figure 7 (a) .  The 
tangential component qssl tends to be greatest, and in the direction of propagation, 

1: 
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at a point lagging 45' behind the wave trough. There is an eddy, due to the varying 
normal velocity qnB1, with centre approximately 90' behind the trough. For the very 
steep wave shown in figure 7 ( b ) ,  there features are shifted closer to the trough. 

In this first approximation the vorticity w is confined to the Stokes boundary 
layer, and none escapes beyond a distance of order 13. In the next approximation we 
shall see that the situation is quite different. 

5. The mean vorticity 
By Theorem A, the mean vorticity 6, at the free surface is given by 

- 
6, = - 2 q  = -2K 1 ai1 

qLI1 = -acr cos ks, 

(5.1) 
since K = M / a s  = 0 by the periodicity. Now for any sinusoidal wave such as (2.10) in 
deep water we have 

(5-2) 
where cr = kc is the radian frequency. Thus the tangential velocity qiI1 correlates with 
the curvature K ~ ,  and from (2.11) and (5.1) we find 

(5.3) W, = - (ak)2 u, 

when ak is small. In other words, the mean vorticity is negative. We show in figure 
8 the value of - 6, for the finite-amplitude capillary waves of figure 5, plotted against 
(ak)2. It can be seen that this increases like (ak)2 at first, but then less rapidly. 

We shall now prove a remarkable result, derived in more general form in Longuet- 
Higgins (1953), but here proved more simply : 

THEOREM B. In  a progressive wave, when the tangential stress at the surface v a n i s h ,  
the mean vorticity 6, just beyond the Stokes layer is just double the mean vorticity as at 
the free surface. 

Proof. Taking averages with respect to S in equations (4.18)-(4.20) we have, to 
order 2, 

iJ=-2% when n = 0 ,  (5.5) 
ao 
-+o when n + m  (5.6) an 

(for clarity, the suffices 1 and 2 are omitted). Now in any two periodic quantities A 
and B we have aA/as B = A aB/as. Hence 

_ _ _ . ~  

by (4.15). Integrating from n = 00, where both a 6 p n  and awlan vanish, we have 

22-2 
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FIGURE 8. The mean vorticity a, = -2Kq generated at the surface of the pure capillary wave of 
figure 5, as a function of (ak)2. 

A second integration from n = 0 gives 

a-a, = qi,(n--u+w.)/q aw 
an 

where a suffix zero denotes the values at n = 0. Letting n+co we find 

8,  -a, = q;* w,/p 

- 
= w,. 

Thus a, = 2a,, 

the result to be proved. 

From (5.3) it follows that for low waves 

(5.9) 

(5.10) 

(5.11) 

am = - 2 ( ~ k ) ~  (r (5.12) 

independently of the viscosity or of the dispersion relation. 
This result has been checked experimentally for low gravity waves of periods of 

0.65 to 1.2 s, see Longuet-Higgins (1960). The demonstration depended on a further 
remarkable result : 

THEOREM C. For low waves, the mean shear due to the vorticity shed from beneath the 
Stokes boundary layer exactly doubles the shear due  to' the irrotational mass-transport 
velocity. 
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For, the mean shear due to the vorticity (5.12) is 

On the other hand the irrotational mass-transport velocity 

U = a2 ake2ku 

(5.13) 

(5.14) 

(5.15) induces a shear - = 2 ( ~ k ) ~  ve2ku, 

which when y = 0 is precisely equal to (5.13). Together, the observed shear beneath 
the Stokes layer becomes 

au 
a Y  

= 4 ( ~ k ) ~ a .  Rot (5.16) 

This was the value observed. 

6. Diffusion of the mean vorticity 
Unlike the periodic components, the mean vorticity ijm will diffuse into the interior 

of the fluid on a longer timescale than the wave period, according to the diffusion 
equation 

When n becomes comparable with k-l ,  it may be replaced by z, the mean depth of 
a particle below the mean surface level. On this time- and lengthscale, if t = 0 is the 
time at which the motion is started, we find from (6.1) that 

where 2 = z/2(vt)k (6.3) 

The horizontal velocity a associated with this vorticity is given by 

that is 

a = a(z, t )  dz, 

In  particular a t  the mean surface level z = 0 we have 

2 1  
7P 

a - -7(vt)", .  0 -  

This can also be written 
t& = -2Nh%i,, 

where N = at/2n is the number of wave cycles after starting the motion and 6 is the 
boundary-layer thickness, defined by (4.1). A graph of % as a function of k, after N 
cycles is shown in figure 9, for various values of N .  
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FIGURE 9. The mean horizontal velocity ti after N cycles, shown as a function of 
the mean depth 2. 

7. Capillary rollers 
As seen in figure 1, a finite train of capillary waves often forms just ahead of the 

crest of a short gravity wave on which there is a strong ‘roller ’, or concentration of 
vorticity. I n  a frame of reference moving with the phase speed c ,  the particles at the 
surface of the crest travel slightly forwards whereas the particles beneath the roller 
travel backwards with nearly the phase speed. Thus there is in the roller itself a 
strong negative vorticity. This strong shearing flow appears also to  produce three- 
dimensional instabilities in the form of vortices having axes aligned in the direction 
of wave propagation, similar to a Langmuir circulation. We regard the latter as a 
secondary, though important, effect, but enquire here only into the source of the 
primary, two-dimensional vorticity. 

We remark that the rollers associated with parasitic capillaries are but one 
example of a more general class of flows which we may call ‘capillary bores’; see 
figure 10. A capillary bore may be defined as a small jump in surface elevation, where 
the surface may be locally vertical, ahead of which is a train of short capillary waves, 
and behind which is found a strong negative vortex. Such flows are seen frequently 
on a disturbed water surface, with or without the presence of wind, and they occur 
on a range of scales. Generally the smaller scales appear to be laminar, the larger 
scales turbulent. The model we propose assumes that the flow is laminar. 

We shall first estimate the total amount of the vorticity shed by a finite train of 
capillary waves. Separation of the flow will not be assumed. In t 3 3 4  above we 
neglected the decay of the wave train with horizontal distance x in the direction of 
wave propagation. For a uniform wave train the time-rate of decay of the amplitude 
a is given by 

(see Lamb 1932, p. 348). In  a capillary roller, however, the source of the capillary 
wave energy is localized near the gravity wave crest. Since the group velocity of 
capillary waves equals $, greater than the phase velocity, the wave energy is 
propagated upstream of the source, that is on the forward face of the gravity wave, 
and decays with distance x from the source, while remaining steady in time. If we 
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2a 

FIQURE 10. Schematic drawing of a capillary bore, with no separation of the flow. 

neglect the work done by the current against the radiation stress (see Longuet-Higgins 
1963) we can determine the horizontal rate of decay by dividing the right-hand side 
of ( 7 . 1 )  by the group velocity @. Hence 

Since the mean velocity is proportional to u2, the effective length of the wave train 
is therefore 

3c X--- 
8vk2 * (7 .3)  

A stream flowing beneath the wave train with speed - c  passes the wave train in a 
time t of order 

x 3  t = - - N - -  
c 8vk2' (7 .4)  

A wave train of initial steepness (ak), at x = 0 will, over the decay distance X ,  have 
a mean-squared amplitude 

( 1  -e-') (uk,)2 = 0.632(ak)i. (7 .5)  

We can estimate the magnitude of the vorticity shed into the stream by supposing 
that it is comparable to the total vorticity shed by a uniform wave train of mean- 
square steepness given by (7 .5) ,  over a time t given by (7 .4) .  Thus in (6.6) we write 

w, = - 1.264(ak)i t~ 
and t = 3/(8vk2) .  This gives 

Now we saw in 53) table 1 (and from figure 3 ) ,  that (ak) ,  can be of order 1 so that 
Go) by (7 .7))  is of the same order as c. In  other words, the vorticity generated beneath 
the capillary waves appears quite capable of generating the velocity differences 
above and below the roller, even in the absence of wind. 

In the case of rollers on a short gravity wave, the velocity difference between top 
and bottom of the roller is further augmented by the vertical gradient of the orbital 
velocity in the gravity wave. In addition, work is done on the parasitic capillaries by 
the orbital motion in the gravity wave (Longuet-Higgins 1963 ; Longuet-Higgins & 
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Stewart 1964), causing them to become both shorter and steeper, thus increasing the 
vorticity that is shed. 

8. Vorticity and mass transport 

from the point of view of the capillary wave momentum. 
The above conclusions are corroborated by considering the creation of vorticity 

The total horizontal momentum density I in a surface wave on deep water is given 

I = %E/c (8.1) 

where KE is the kinetic energy density (see for example Longuet-Higgins 1975). For 
a pure capillary wave ($3) Hogan (1979) has shown that 

2T 
sinh 41,h0 

KE = 

(since A = e-2@o), while the phase speed c, in dimensional units, is given by 

c2 = kT tanh 21,h0 

(see (3.6)). With equation (8.1) this yields 

2(T/k)i 
(cosh 2+0)i (sinh 21,h0)t' 

I =  

For small wave steepnesses (e@o % 1) this reduces to  

I = $(ak)' (T/k)i, 

and for the maximum wave steepness ak = 2.293, when sinh 2$0 = 0.8724 (from 
(3.4)), we have 

whereas the formula (8.5) would give instead a factor 2.628. 
When the capillary wave is damped out by viscosity, the wave momentum I is 

converted mainly to a horizontal current (though some may go to  produce a 
depression of the mean surface level). By equation (6.3), the depth z to which the 
momentum is diffused is of order (vt); where t is given by (7.4). Thus we have 

I = 2.131(T/k)i (8.6) 

z rv (g)"-'. (8.7) 

The mean current velocity is of order I / z .  Using (7.4) we have 

u0 - ;(ah)' ( E ) ~ c  = 0 . 8 2 ( ~ k ) ~  c (8.8) 
in rough agreement with (7.7). 

If the capillary waves were dissipated instantaneously by internal friction, the 
profile of the horizontal momentum would presumably be given by the mass- 
transport velocity U in the original wave. I n  figure 11 we show U / c ,  calculated from 

TE - 1---,  
C TL 

U -- (8.9) 

where TL is the Lagrangian time 

(8.10) 
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FIGURE 11. The mass-transport velocity U for pure capillary waves, shown as a function of the 
mean depth of each streamline in figure 5. 

integrated along a streamline of the flow in figure 5 ,  and T E  is the Eulerian period 
n/c = II. This is plotted as a function of the mean depth q of a streamline below the 
mean surface level yo, for waves of various steepnesses ak. It is notable that for the 
steepest waves, U/c  is close to unity over an appreciable thickness of fluid nearest the 
free surface. This reflects the fact that the fluid in the rounded crests of the wave all 
travels forward with nearly the phase speed c. The momentum of this fluid has only 
to be released into a configuration where the surface is flattened in order to create a 
positive current moving very nearly with speed c. 

9. Steep capillary waves 
In very steep capillary waves having sharply curved troughs, such as shown in 

figures 5(d)  and 7 ( b ) ,  it seems inevitable that the streamlines will separate at the 
wave troughs. The high vorticity - 2 ~ q  generated at a trough will give rise directly 
to a free streamline as in figure 12. The initial velocity difference Au across the layer 
will be of the same order as the vorticity w integrated round the sharp bend, that is 

(9.1) 

(9.2) 

A u  - IOJ ds = s( - 2 ~ q )  ds. 

Kd8 = A8 = 7~ I Since 

we see that velocity differences of the same order as q or c are to be expected. 
The enclosed space, or 'bubble ', in the trough of the limiting wave in figure 5 has 

long suggested that bubbles of air may be trapped by such waves (see Crapper 1957; 
Schooley 1958). This no doubt explains the injection of air bubbles beneath 
capillary-gravity waves as seen in the laboratory by Toba (1961), Koga (1982) and 
others, although we may also expect the density and viscosity of the air to be of 
significance in this process. 
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FIGURE 12. Schematic drawing of a crest roller, with flow separation and free shear layer. 

We recall that this limiting form of steep waves, in which adjacent wave crests 
come into contact and trap air, is not confined to pure capillary waves, but is found 
over a whole range of the parameter (Tlc2/g), as shown by Schwartz & Vanden- 
Broeck (1979), Chen & Saffman (1979, 1980) and Hogan (1980, 1981). The range of 
(Tk2/g)  extends even to zero, to include capillary-gravity waves of solitary type on 
deep water (Longuet-Higgins 1989). Boundary-layer calculations similar to those 
that we have carried out for pure capillary waves could equally well be performed for 
all such waves. 

10. The development of rollers and bores 
The development of a capillary roller at the crest of a short gravity wave appears 

to be a consequence of the existence of the parasitic capillaries. This in turn may be 
a phenomenon of irrotational flow, in the first place. 

For example, we know the theoretical form of the wave crest in a steep gravity 
wave (the ‘almost-highest wave’) as the limiting 120’ corner flow is approached (see 
Longuet-Higgins & Fox 1976). At ‘infinity’ the flow approaches asymptotically the 
120’ corner flow, and the only scale length in this solution is the radius of curvature 
at the crest. 

The corresponding irrotational solution including capillarity has not yet been 
calculated, but we may conjecture that i t  will feature capillary waves ahead of the 
gravity wave crest. These must have a speed which enables them to propagate 
against the backward flow. The source of the capillary wave energy is presumably 
connected with nonlinear features of the flow near the gravity wave crests, where the 
lengthscale of the flow is comparable to the wavelength of the capillaries. A first 
theory for such parasitic capillaries was given by Longuet-Higgins (1963). This 
assumed the wave amplitude t o  be due to the perturbation in the pressure brought 
about by capillarity in the neighbourhood of the gravity wave crest, where the 
curvature is relatively large. The theory was further developed by Vanden-Broeck 
(1960) and Crapper (1970), with qualitative experimental confirmation by Chang, 
Wagner & Yuen (1978) and Yermakoo et al. (1986); see also Ebuchi et al. (1987). 
Ruvinsky &, Freidman (1981, 1985) and Ruvinsky et al. (1991) have developed a 
theory which takes fuller account of the dynamics of the wave crest, and includes the 
damping of the capillaries, to first order, but ignores the existence of the roller at  the 
crest. 

Gravity waves in a random sea being essentially transitory, steep or breaking 
waves may appear through wave grouping, in a short time of the order of one wave 
period. The wave crests may initially be irrotational, or relatively so. However, very 
soon after the first appearance of the parasitic capillaries, the shed velocity will begin 
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to build up a vortex at the gravity wave crest. This vortex will tend to accentuate 
the curvature immediately behind (i.e. downstream of) the first capillary wave, and 
so increase its amplitude. The dissipation of energy may also reduce the steepness of 
the gravity wave. But it seems likely that, over a short time at  least, there is a 
positive feedback between the crest roller and the parasitic capillaries. In other 
words, the configuration of roller and capillaries is self-sustaining, the energy for the 
flow being drawn from the much larger energy of the gravity wave. A schematic 
picture is shown in figure 12. 

The flow may break down in various ways. One is by dissipation of the energy of 
the gravity wave (see Longuet-Higgins 1963, $lo) ,  or the gravity wave may flatten 
by the familiar process of moving forwards through a wave group. A second 
possibility is for the capillary waves to trap air bubbles in the sharp wave troughs as 
observed by Koga (1982). This process is accompanied by a characteristic circulation 
near the gravity wave crest, a partial model for which has been suggested by 
Longuet-Higgins (1990). 

A third possibility, which is always present when a laminar viscous flow is pushed 
to larger Reynolds numbers, is that the flow will pass via instability into a turbulent 
flow. In such a case the vorticity generated by the capillaries may be replaced 
entirely by an unstable shear layer between the roller and the underlying flow, and 
then the parasitic capillaries may disappear altogether. This appears to have 
happened in the microbreaker shown for example by Banner & Cato (1988) ; see also 
Banner & Phillips (1974). 

1 1. Conclusions and suggestions 
We have shown that the mean vorticity shed from parasitic capillaries on the 

forward face of a short gravity wave may contribute substantially towards the 
vorticity in the roller at the gravity wave crest. Under some circumstances, in the 
absence of wind, this mechanism may account for all the observed vorticity. 

The crest roller and the train of parasitic capillaries form a cooperative system, 
each sustaining the other. The capillaries may become so steep as to trap air bubbles 
beneath the surface, as seen by Koga (1982). 

The scale of the phenomenon is limited. At  larger Reynolds numbers the capillary 
wave train disappears and is replaced by an unstable shear layer between the roller 
and the fluid beneath. 

At  small scales, the role of surface tension and viscosity are all-important. In  this 
paper we have estimated the effect of viscosity in a somewhat ad hoc way, as a 
perturbation to an otherwise irrotational flow. Ultimately, a more radical approach 
is needed, incorporating viscous boundary conditions from the start. 

We have considered the dynamics of the boundary layer mainly from the point of 
view of vorticity. It may also be fruitful to consider the balance of tangential 
momentum in the layer (Longuet-Higgins 1969a; Csanady 1985), especially over a 
wavelength of the gravity wave. The generation of mean vorticity a, by the 
parasitic capillaries is equivalent in its effects to applying a tangential stress -parn 
at the surface of the gravity wave. This tends to pile up an additional mass of fluid 
lagging 90" behind the applied stress (see Longuet-Higgins 1969a). Since the 
capillaries are on the forward face of the wave, we expect the additional mass to 
appear near the crest, as is observed. The virtual tangential stress will also contain 
a second harmonic which will in general cause the gravity wave to become 
asymmetric, in the horizontal sense. Ordinary, second-harmonic viscous damping 
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will of course have a similar effect, but the effect of dissipation by the capillaries is 
much stronger. In fact it may lead to a kind of dissipative coupling between the 
gravity wave and its second and higher harmonics. 

In this paper the direct effect of the wind in producing vorticity a t  the gravity 
wave crest has not been discussed, but the following argument suggests that it is 
small. For, the total horizontal wind stress, which includes the normal pressure 
fluctuations, is of order 

where W is the wind speed. On the other hand by (5.13) the capillaries exert a virtual 
stress 

(cf. Longuet-Higgins 1960, $6). Thus when (ak) is of order 1 we have 

Twind = O.Oo2pair wz, (11.1) 

7c,p = 2 ( a k ) 2 p ~  (11.2) 

~ w i n d 7 c a p  = ( W I C ) ~  ( c 2 / ~ ) I .  (11.3) 

where c and (T are in c.g.s. units. But for gravity-capillary waves near the minimum 
phase speed 

c2//a = (2Tg)t x 200 dyne/cm. (11.4) 

Hence 7,ind/7c,p is of order 0.02 (W/c)'. Since W / c  is usually of order 1, the ratio 
(1 1.3) is small, reflecting the fact that the capillary wave stress acts over only a small 
fraction of the wavelength of the gravity waves. Such a localized stress produces, as 
we have seen, a localized distribution of vorticity. 

This work has been supported by the Office of Naval Research under grant no. 
NOOO14-91 -J- 1582. 
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